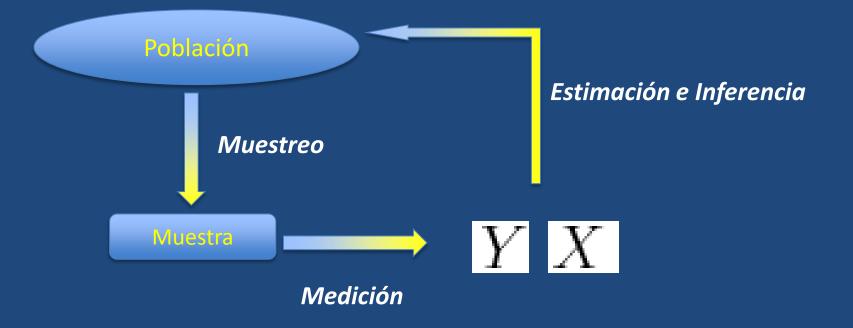


Guía para el análisis de la ENSANUT 2012

Martín Romero Martínez
Instituto Nacional de Salud Pública
México 2012

Objetivo

Presentar consideraciones relevantes para el análisis de la ENSANUT 2012 :


- La ENSANUT es una encuesta
- Tamaño de muestra
- El manejo de las bases de datos

La ENSANUT es una encuesta

Elementos de una encuesta

Población: Habitantes de viviendas particulares habitadas

Muestra : Elementos de la población seleccionados con

probabilidades conocidas

En consecuencia ...

El análisis de la ENSANUT debe considerar los elementos del diseño :

- Muestreo
- Medición
- Inferencia

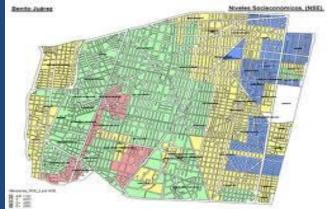
Elementos del Muestreo

- Tamaño de muestra n= 1,712 viviendas seleccionadas por estado
- Las unidades primarias de muestreo (UPM) son las AGEB
- Las UPM se estratificaron por dos criterios : urbanidad y marginalidad

Estratificación

Rezago Social	Urbanidad			Nueva
	Rural	Rural Urbano Metropolitano		Creación
Mayor	16 UPM			
Menor	32 UPM			

Las AGEB de mayor rezago social son las AGEB que contienen al 20% de las viviendas de un estado con mayor rezago social. El rezago social de una AGEB se definió mediante la emulación del índice de rezago social definido por el CONEVAL.


Estrato rural: localidades con menos de 2,500 habitantes

Estrato Metropolitano: localidades con mas de 100 mil habitantes, capitales de los estados, localidades no rurales de los municipios incluidos en las zonas metropolitanas definidas por INEGI en 2000

Procedimiento de selección

Áreas (AGEB)

Viviendas

Personas

Selección de individuos en la vivienda

Niño escolar

Adolescente

Adultos

Siempre que es posible se selecciona a :

- Un niño pre-escolar con edad 0 a 4 años
- Un niño escolar con edad 5 a 9 años
- Un adolescente con edad 10 a 19 años
- Un adulto con edad 20 años y más
- Un utilizador de servicios médicos no hospitalarios, no preventivos durante los últimos quince días

Procedimiento de medición

La información se colectó mediante la aplicación de un cuestionario, el cual se recomienda leer antes de proceder al análisis de la encuesta:

I. FACTORES DE RIESGO

0.3 ¿Has fumado por lo menos cien cigarros (5 cajetillas) de tabaco durante toda tu vida?

Si
No
Nunca ha fumado

Se sugiere, contestar el cuestionario antes de analizar la encuesta.

Procedimiento de Estimación

El total de un atributo Y se estima mediante la suma ponderada : $\hat{V} = \nabla_{u} V$

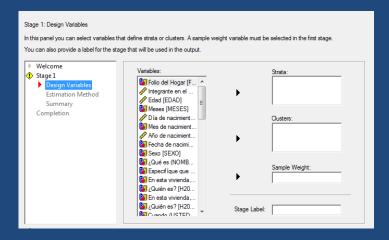
Individuo	Y(individuo) = 1 si tiene diabetes	W (ponderador)
А	1	10
В	0	2
С	0	3

El total de individuos con diabetes estimado es igual a = 1*10 + 0*2 + 0*3. De modo aproximado, el ponderador *i* es el número de personas en la población representadas por el inidviduo i

Procedimiento de estimación

Las estimaciones ponderadas y no ponderadas pueden ser diferentes.

En general, es recomendable analizar los resultados ponderados de la ENSANUT porque los ponderadores contienen información sobre el diseño de muestra.



Como incorporar el diseño de muestra en el análisis (ejemplo SPSS)

CSPLAN ANALYSIS

```
/PLAN FILE= 'varianzas.csaplan'
/PLANVARS ANALYSISWEIGHT= pondeh
/PRINT PLAN
/DESIGN STRATA= est_var CLUSTER= code_upm
/ESTIMATOR TYPE=WR.
```

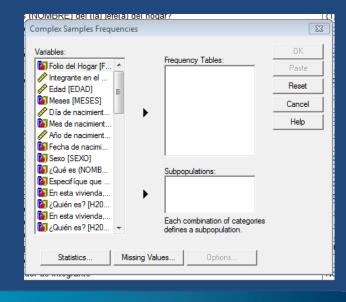
		Time Sei	ries	,		
meri		Survival		•	NOMBRE) está afiliado(a) o inscrito	
ing		Multiple	Recnonce		IPM	
ing		manapie nesponse		·	e entidad	
ing		Missing Value Analysis			e municipio	
ing		Complex Samples			Select a Sample	
meric	:	1	0	Estrato		
meric	;	1	0	Estrato	Prepare for Analysis	
meric	;	1	0	Estrato	Frequencies	
meric		8	2	Estrato		

Como incorporar el diseño de muestra en el análisis (ejemplo SPSS)

```
CSTABULATE

/PLAN FILE = 'varianzas.csaplan'

/TABLES VARIABLES = h517


/SUBPOP TABLE = est_urb DISPLAY=LAYERED

/CELLS POPSIZE TABLEPCT

/STATISTICS CIN(95)

/MISSING SCOPE = TABLE CLASSMISSING = EXCLUDE.
```

Missing Value Analysis			is	e entidad e municipio
	Complex Samples			Select a Sample
ic	1	0	Estrato	
ic	1	0	Estrato	Prepare for Analysis
ic	1	0	Estrato	Frequencies
ic	8	2	Estrato	Descriptives
:_	0	^	Course of	Descriptivesiii

Como incorporar el diseño de muestra en el análisis (ejemplo SPSS)

¿El dueño o propietario de la vivienda:

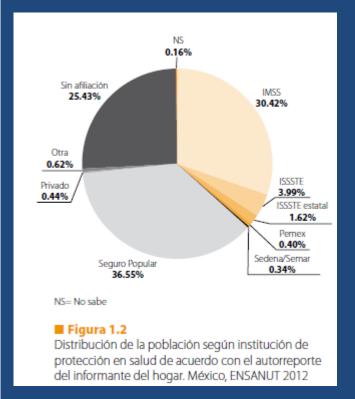
			95% Confidence Interval	
		Estimate	Lower	Upper
Population Size	la compró hecha?	5703583	5331371	6075794
	la mandó construir?	6827871	6547457	7108286
	la construyó el mismo?	6362444	6110116	6614773
	la construyó de otra manera?	1031277	952258.7	1110296
	Total	2E+007	2E+007	2E+007
% of Total	la compró hecha?	28.6%	26.9%	30.4%
	la mandó construir?	34.3%	33.0%	35.6%
	la construyó el mismo?	31.9%	30.7%	33.2%
	la construyó de otra manera?	5.2%	4.8%	5.6%
	Total	100.0%	100.0%	100.0%

Ejemplo en Stata

- use "\$bases_org\integrantes_p.dta", clear;
- svyset [pw= pondei],psu(code_upm) strata(est_var) singleunit(centered);
- gen afilia_1ra = h211a;
- replace afilia_1ra = 2 if afilia_1ra == 3;
- recode afilia_1ra (9=0);
- lab def afilia1 0 "Ninguna" 1 "IMSS" 2 "ISSSTE" 4 "Pemex" 5 "Defensa/Marina"
 6 "Seguro Popular" 7 "Privado" 8 "Otro" 99 "NS/NR";
- lab val afilia_1ra afilia1;
- svy:prop afilia_1ra;

Estos son los porcentajes en la figura 1.2 del reporte

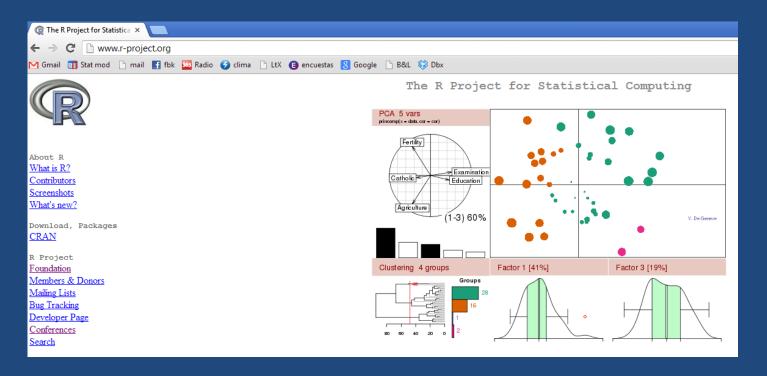
Survey: Proportion estimation


 Number of strata =
 155
 Number of obs =
 194923

 Number of PSUs =
 1622
 Population size =
 115170278

 Design df =
 1467

_prop_5: afilia_1ra = Defensa/Marina
_prop_6: afilia_1ra = Seguro Popular
_prop_9: afilia_1ra = NS/NR


	Proportion	Linearized Std. Err.	[95% Conf.	Interval]
afilia_1ra				
Ninguna	.2543602	.0034141	.2476632	.2610571
IMSS	.3041183	.0046824	.2949334	.3133032
ISSSTE	.056177	.0018097	.0526271	.0597269
Pemex	.004065	.000691	.0027096	.0054205
_prop_5	.0034561	.0004774	.0025197	.0043925
_prop_6	.3655547	.0044877	.3567517	.3743577
Privado	.0044142	.0004453	.0035408	.0052877
Otro	.0062463	.0005346	.0051977	.007295
_prop_9	.0016082	.0001822	.0012507	.0019656

Existen otras alternativas

El análisis de muestras complejas puede ser realizado con igual grado de dificultad en el programa R (gratuito)

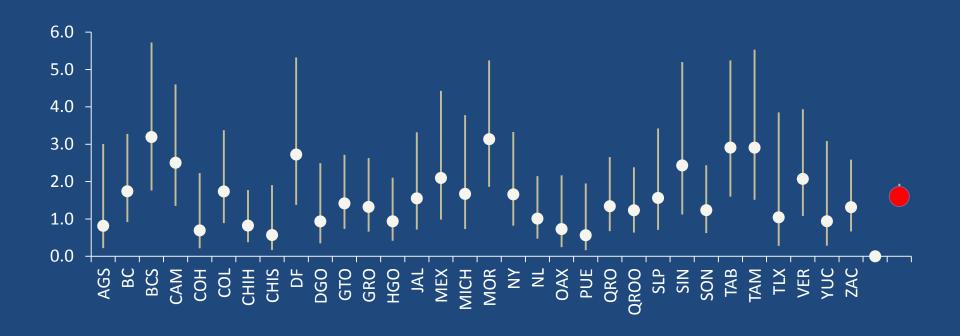
Tamaño de muestra

Tamaño de muestra

La ENSANUT es una encuesta probabilista entonces es posible obtener intervalos de confianza válidos para cualquier tamaño de muestra.

Un intervalo de confianza del 95% es válido si el procedimiento que generó dicho intervalo genera un 95% de intervalos que cubren al parámetro de interés.

Tamaño de muestra


Cuando el tamaño de muestra es pequeño, el poder estadístico de los intervalos de confianza para la toma de decisiones decrece

Es responsabilidad del usuario el considerar el poder estadístico del tamaño de muestra

Tamaño de Muestra (Ejemplo)

Como ejemplo, la gráfica siguiente presenta las estimaciones estatales del porcentaje de adolescentes con mas de dos ayunos por semana en los últimos 3 meses (en rojo, estimación nacional)

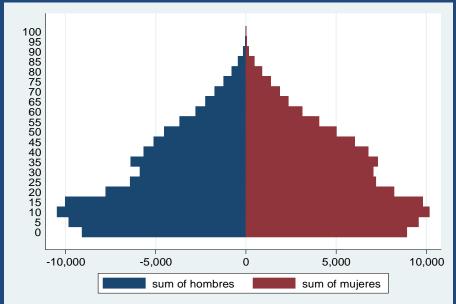
Manejo de las bases de datos

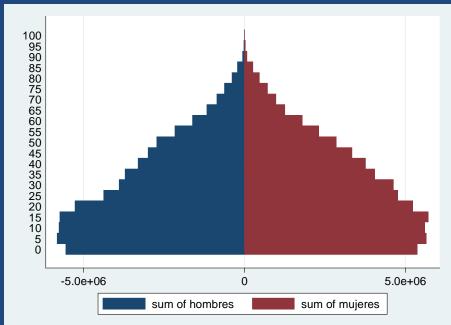
Manejo de las bases de datos

Cada base de datos tiene un ponderador, entonces cada base de datos puede ser analizada de modo independiente. La unión de bases de datos se discute en seguida

Manejo de las bases de datos

Variables incluidas en todas las bases de datos


Variable	Significado	
Folio_c	Folio de hogar	
Intp	Integrante dentro del hogar	
pondef	Ponderador final	
Est_var	Estrato para calcular varianzas	
Code_upm	Identificador de unidad primaria	
Est_urb	Estrato de urbanidad	
Est_marg	Estrato de marginalidad	
Est_dis	Estrato de diseño marginalidad x urbanidad	
pondeh	Ponderador de hogar	
pondei	Ponderador de integrantes	


Importancia de los ponderadores

- Gráfica 1:
 - graph hbar (sum) hombres mujeres [pw=pondei],over (gpo_edad, descending gap(0)) stack
- Gráfica 2:
 - graph hbar (sum) hombres mujeres, over (gpo_edad, descending gap(0)) stack

Gráfica 1. Sin ponderadores

Gráfica 2. Con ponderadores

Unión de bases

Supongamos los siguientes conjuntos hipotéticos de datos

Folio	Datos Adulto-Salud
1	Si
2	Si
3	Si
4	Si

Folio	Datos Adulto- Antropometria
2	Si
3	Si
6	Si

Entonces, existen dos opciones de análisis.

- Copiar los datos de adulto-salud al archivo de adultosantropometría
- Copiar los datos de adulto-antropometría al archivo de adultos-salud

Cual de las dos opciones es válida y cual es la mejor ?

Unión de bases

Las dos opciones son válidas.

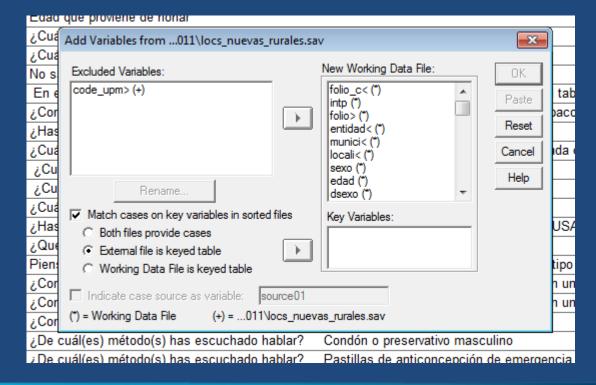
Salud > Antropometría

Folio	Adultos -Salud	Adultos- Antropometría
1	Si	No
2	Si	Si
3	Si	Si
4	Si	No

Antropometría → Salud

Folio	Adultos -Salud	Adultos- Antropometría
2	Si	Si
3	Si	Si
6	No	Si

La elección depende de cual de las dos bases de datos tiene menos valores faltantes


Llaves para pegar las bases

- La variable única por hogar
 - folio_c
- Para análisis por individuo, la variable que identifica al individuo
 - (folio_c, intp)
- En Stata
- merge 1:1 folio_c intp using "dir\base.dta"

Llaves para pegar bases

		Municipio
Sort Cases		Localidad
Transpose		Sexo que proviene de hogar
Restructure		Edad que proviene de hohar
Merge Files	•	Add Cases de la) en
Aggregate		Add Variables lidos tier
Identify Duplicate Cases	L	TVO Sabe edad de maividual Ac
		En el último año, ¿te han dao
Ordhamanal Danism		

Gracias por su atención

Con gusto, cualquier duda, favor de escribir a info_ciee@insp.mx

